mirror of
https://gitee.com/chinabugotech/hutool.git
synced 2025-05-09 23:51:34 +08:00
commit
84621a71e8
@ -0,0 +1,195 @@
|
||||
package cn.hutool.crypto.asymmetric;
|
||||
|
||||
import cn.hutool.core.util.HexUtil;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.security.SecureRandom;
|
||||
import java.util.Random;
|
||||
|
||||
/**
|
||||
* 同态加密算法Paillier
|
||||
*
|
||||
* 加法同态,存在有效算法+,E(x+y)=E(x)+E(y)或者 x+y=D(E(x)+E(y))成立,并且不泄漏 x 和 y。
|
||||
* 乘法同态,存在有效算法*,E(x×y)=E(x)*E(y)或者 xy=D(E(x)*E(y))成立,并且不泄漏 x 和 y。
|
||||
*
|
||||
* 方案安全性可以归约到判定性合数剩余假设(Decisional Composite Residuosity Assumption, DCRA),即给定一个合数n和整数z,判定z是否在n^2下是否是n次剩余是困难的。
|
||||
* 这个假设经过了几十年的充分研究,到目前为止还没有多项式时间的算法可以攻破,所以Paillier加密方案的安全性被认为相当可靠。
|
||||
*
|
||||
* 字符串文本加解密相互配对,此时无法使用同态加法和同态乘法
|
||||
* 数值类型不可使用字符串加解密
|
||||
*
|
||||
* 公钥加密和同态加法/同态乘法运算
|
||||
* 私钥解密
|
||||
*
|
||||
* @author Revers.
|
||||
**/
|
||||
public class Paillier {
|
||||
|
||||
//公钥 n g
|
||||
//私钥 n lambda u
|
||||
private static int bitLength = 2048;
|
||||
private static int certainty = 256;
|
||||
|
||||
/**
|
||||
* 生成密钥算法。(默认)
|
||||
* @return PaillierKeyPair 公钥私钥对
|
||||
*/
|
||||
public static final PaillierKeyPair generateKey() {
|
||||
return generateKey(bitLength,certainty);
|
||||
}
|
||||
|
||||
/**
|
||||
* 生成密钥算法
|
||||
*
|
||||
* @param bitLength 密钥位数
|
||||
* @param certainty 此构造函数的执行时间与此参数的值成比例。
|
||||
* @return PaillierKeyPair 公钥私钥对
|
||||
*/
|
||||
public static final PaillierKeyPair generateKey(int bitLength,int certainty) {
|
||||
BigInteger p =new BigInteger(bitLength / 2, certainty, new SecureRandom());
|
||||
BigInteger q =new BigInteger(bitLength / 2, certainty, new SecureRandom());
|
||||
BigInteger n = p.multiply(q);
|
||||
BigInteger nSquare = n.multiply(n);
|
||||
BigInteger lambda = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE))
|
||||
.divide(p.subtract(BigInteger.ONE).gcd(q.subtract(BigInteger.ONE)));
|
||||
BigInteger g = n.add(BigInteger.ONE);
|
||||
BigInteger u = g.modPow(lambda, nSquare).subtract(BigInteger.ONE).divide(n).modInverse(n);
|
||||
PaillierpublicKey publicKey = new PaillierpublicKey(n,g);
|
||||
PaillierPrivateKey privateKey = new PaillierPrivateKey(n, lambda,u);
|
||||
PaillierKeyPair keyPair = new PaillierKeyPair(publicKey,privateKey);
|
||||
return keyPair;
|
||||
}
|
||||
|
||||
/**
|
||||
* 字符串加密算法。输入一个明文和一个公钥
|
||||
* 只能使用字符串解密算法 decryptString ,不可使用同态加法和同态乘法
|
||||
*
|
||||
* @param text 明文,字符串形式
|
||||
* @param publicKey 公钥
|
||||
*
|
||||
* @return byte[]密文
|
||||
*/
|
||||
public static final byte[] encryptString(String text, PaillierpublicKey publicKey) {
|
||||
BigInteger r = new BigInteger(bitLength, new Random());
|
||||
BigInteger n = publicKey.getN();
|
||||
BigInteger nsquare = n.multiply(n);
|
||||
return publicKey.getG().modPow( new BigInteger(HexUtil.encodeHexStr(text),16), nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare).toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* 字符串解密算法。输入一个密文和一个私钥
|
||||
*
|
||||
* @param ciphertext byte[]密文
|
||||
* @param privateKey 私钥
|
||||
* @return 解密的明文
|
||||
*/
|
||||
public static final String decryptString(byte[] ciphertext, PaillierPrivateKey privateKey) {
|
||||
BigInteger n = privateKey.getN();
|
||||
BigInteger lambda = privateKey.getLambda();
|
||||
BigInteger u = privateKey.getu();
|
||||
BigInteger nsquare = n.multiply(n);
|
||||
String s = new BigInteger(ciphertext).modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n).toString();
|
||||
return HexUtil.decodeHexStr(new BigInteger(s).toString(16));
|
||||
}
|
||||
|
||||
/**
|
||||
* 加密算法。输入一个明文和一个公钥
|
||||
*
|
||||
* @param text 明文,为防止字符串数据,只能使用 BigInteger类型
|
||||
* @param publicKey 公钥
|
||||
* @return byte[]密文
|
||||
*/
|
||||
public static final byte[] encrypt(BigInteger text, PaillierpublicKey publicKey) {
|
||||
BigInteger r = new BigInteger(bitLength, new Random());
|
||||
BigInteger n = publicKey.getN();
|
||||
BigInteger nsquare = n.multiply(n);
|
||||
return publicKey.getG().modPow(text, nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare).toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* 解密算法。输入一个密文和一个私钥
|
||||
*
|
||||
* @param ciphertext byte[]密文
|
||||
* @param privateKey 私钥
|
||||
* @return 解密的明文
|
||||
*/
|
||||
public static final String decrypt(byte[] ciphertext, PaillierPrivateKey privateKey) {
|
||||
BigInteger n = privateKey.getN();
|
||||
BigInteger lambda = privateKey.getLambda();
|
||||
BigInteger u = privateKey.getu();
|
||||
BigInteger nsquare = n.multiply(n);
|
||||
return new BigInteger(ciphertext).modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n).toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* 同态标量加算法。输入两个密文和一个公钥
|
||||
*
|
||||
* @param ciphertext 密文1,BigInteger
|
||||
* @param ciphertext2 密文2,BigInteger
|
||||
* @param publicKey 公钥
|
||||
* @return byte[]密文
|
||||
*/
|
||||
public static final byte[] add(BigInteger ciphertext,BigInteger ciphertext2,PaillierpublicKey publicKey){
|
||||
return ciphertext.add(ciphertext2).multiply(publicKey.getN()).toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* 同态标量加算法。输入两个密文和一个公钥
|
||||
*
|
||||
* @param ciphertext 密文1,10进制字符串
|
||||
* @param ciphertext2 密文2,10进制字符串
|
||||
* @param publicKey 公钥
|
||||
* @return byte[]密文
|
||||
*/
|
||||
public static final byte[] add(String ciphertext,String ciphertext2,PaillierpublicKey publicKey){
|
||||
return new BigInteger(ciphertext).multiply(new BigInteger(ciphertext2)).mod(publicKey.getN().multiply(publicKey.getN())).toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* 同态标量加算法。输入两个密文和一个公钥
|
||||
*
|
||||
* @param ciphertext byte[] 10进制字符串
|
||||
* @param ciphertext2 byte[] 10进制字符串
|
||||
* @param publicKey 公钥
|
||||
* @return byte[]密文
|
||||
*/
|
||||
public static final byte[] add(byte[] ciphertext,byte[] ciphertext2,PaillierpublicKey publicKey){
|
||||
return new BigInteger(ciphertext).multiply(new BigInteger(ciphertext2)).mod(publicKey.getN().multiply(publicKey.getN())).toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* 同态标量乘算法。输入一个密文和一个标量明文和一个公钥
|
||||
*
|
||||
* @param ciphertext 密文,BigInteger
|
||||
* @param number 明文,10进制字符串
|
||||
* @param publicKey 公钥
|
||||
* @return byte[]密文
|
||||
*/
|
||||
public static final byte[] multiply(BigInteger ciphertext,BigInteger number,PaillierpublicKey publicKey){
|
||||
return ciphertext.modPow(number,publicKey.getN().multiply(publicKey.getN())).toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* 同态标量乘算法。输入一个密文和一个标量明文和一个公钥
|
||||
*
|
||||
* @param ciphertext 密文,byte[]
|
||||
* @param number 明文,10进制字符串
|
||||
* @param publicKey 公钥
|
||||
* @return byte[]密文
|
||||
*/
|
||||
public static final byte[] multiply(String ciphertext,BigInteger number,PaillierpublicKey publicKey){
|
||||
return new BigInteger(ciphertext).modPow(number,publicKey.getN().multiply(publicKey.getN())).toByteArray();
|
||||
}
|
||||
|
||||
/**
|
||||
* 同态标量乘算法。输入一个密文和一个标量明文和一个公钥
|
||||
*
|
||||
* @param ciphertext 密文,byte[]
|
||||
* @param number 明文,10进制字符串
|
||||
* @param publicKey 公钥
|
||||
* @return byte[]密文
|
||||
*/
|
||||
public static final byte[] multiply(byte[] ciphertext,BigInteger number,PaillierpublicKey publicKey){
|
||||
return new BigInteger(ciphertext).modPow(number,publicKey.getN().multiply(publicKey.getN())).toByteArray();
|
||||
}
|
||||
}
|
@ -0,0 +1,32 @@
|
||||
package cn.hutool.crypto.asymmetric;
|
||||
|
||||
/**
|
||||
* 存放Paillier 公钥私钥对
|
||||
*
|
||||
* @author Revers.
|
||||
**/
|
||||
public class PaillierKeyPair {
|
||||
private PaillierPrivateKey privateKey;
|
||||
private PaillierpublicKey publicKey;
|
||||
|
||||
public PaillierKeyPair(PaillierpublicKey PaillierpublicKey,PaillierPrivateKey PaillierPrivateKey) {
|
||||
this.privateKey = PaillierPrivateKey;
|
||||
this.publicKey = PaillierpublicKey;
|
||||
}
|
||||
|
||||
public PaillierPrivateKey getPrivateKey() {
|
||||
return privateKey;
|
||||
}
|
||||
|
||||
public void setPrivateKey(PaillierPrivateKey privateKey) {
|
||||
this.privateKey = privateKey;
|
||||
}
|
||||
|
||||
public PaillierpublicKey getPublicKey() {
|
||||
return publicKey;
|
||||
}
|
||||
|
||||
public void setPublicKey(PaillierpublicKey publicKey) {
|
||||
this.publicKey = publicKey;
|
||||
}
|
||||
}
|
@ -0,0 +1,39 @@
|
||||
package cn.hutool.crypto.asymmetric;
|
||||
|
||||
import java.math.BigInteger;
|
||||
|
||||
/** 存放Paillier 私钥
|
||||
*
|
||||
* @author Revers.
|
||||
**/
|
||||
public class PaillierPrivateKey{
|
||||
private final BigInteger n;
|
||||
private final BigInteger lambda;
|
||||
private final BigInteger u;
|
||||
|
||||
public PaillierPrivateKey(BigInteger n, BigInteger lambda, BigInteger u) {
|
||||
if (n == null) {
|
||||
throw new NullPointerException("n is null");
|
||||
}
|
||||
if (lambda == null) {
|
||||
throw new NullPointerException("lambda is null");
|
||||
}
|
||||
if (u == null) {
|
||||
throw new NullPointerException("u is null");
|
||||
}
|
||||
this.n = n;
|
||||
this.lambda = lambda;
|
||||
this.u = u;
|
||||
}
|
||||
|
||||
public BigInteger getN() {
|
||||
return n;
|
||||
}
|
||||
public BigInteger getLambda() {
|
||||
return lambda;
|
||||
}
|
||||
public BigInteger getu() {
|
||||
return u;
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,30 @@
|
||||
package cn.hutool.crypto.asymmetric;
|
||||
|
||||
import java.math.BigInteger;
|
||||
|
||||
/** 存放Paillier 公钥
|
||||
*
|
||||
* @author Revers.
|
||||
**/
|
||||
public class PaillierpublicKey{
|
||||
private BigInteger n;
|
||||
private BigInteger g;
|
||||
|
||||
public PaillierpublicKey(BigInteger n, BigInteger g) {
|
||||
if (n == null) {
|
||||
throw new NullPointerException("n is null");
|
||||
}
|
||||
if (g == null) {
|
||||
throw new NullPointerException("g is null");
|
||||
}
|
||||
this.n = n;
|
||||
this.g = g;
|
||||
}
|
||||
|
||||
public BigInteger getN() {
|
||||
return n;
|
||||
}
|
||||
public BigInteger getG() {
|
||||
return g;
|
||||
}
|
||||
}
|
@ -0,0 +1,49 @@
|
||||
package cn.hutool.crypto.asymmetric;
|
||||
|
||||
import org.junit.Test;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.security.NoSuchAlgorithmException;
|
||||
|
||||
/**
|
||||
* @author Revers.
|
||||
**/
|
||||
public class PaillierTest {
|
||||
@Test
|
||||
public void test() throws NoSuchAlgorithmException {
|
||||
//生成 公钥和私钥
|
||||
PaillierKeyPair paillierKeyPair = Paillier.generateKey();
|
||||
PaillierpublicKey publicKey = paillierKeyPair.getPublicKey();
|
||||
PaillierPrivateKey privateKey = paillierKeyPair.getPrivateKey();
|
||||
|
||||
//创建两个大整数m1,m2:
|
||||
BigInteger m1 = new BigInteger("10");
|
||||
BigInteger m2 = new BigInteger("40");
|
||||
|
||||
//公钥加密私钥解
|
||||
byte[] em1 = Paillier.encrypt(m1, publicKey);
|
||||
System.out.println("m1解密结果" + Paillier.decrypt(em1, privateKey));
|
||||
|
||||
//同态特性
|
||||
byte[] em2 = Paillier.encrypt(m2, publicKey);
|
||||
System.out.println("m1加密em1 :"+ new BigInteger(em1).toString(16));
|
||||
System.out.println("m2加密em2 :"+ new BigInteger(em2).toString(16));
|
||||
byte[] add = Paillier.add(em1, em2, publicKey);
|
||||
System.out.println("m1+m2 密文的和:" + new BigInteger(add).toString(16));
|
||||
System.out.println("m1+m2 密文的和的解:" + Paillier.decrypt(add,privateKey));
|
||||
|
||||
byte[] mul = Paillier.multiply(em1, m2, publicKey);
|
||||
System.out.println("m1*m2 密文的积:" + new BigInteger(mul).toString(16));
|
||||
System.out.println("m1*m2 密文的积的解:" + Paillier.decrypt(mul,privateKey));
|
||||
|
||||
//加解密字符串
|
||||
String s = "123456dfsgsdg!@#%!@@#$!#%是豆腐干山豆根v啊微软";
|
||||
System.out.println("字符串明文: "+s);
|
||||
|
||||
byte[] encrypt = Paillier.encryptString(s, publicKey);
|
||||
System.out.println("字符串密文: "+ new BigInteger(encrypt).toString(16) );
|
||||
|
||||
String decrypt = Paillier.decryptString(encrypt, privateKey);
|
||||
System.out.println("字符串密文解密: "+ decrypt);
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user